

Antea Group

Understanding today.
Improving tomorrow.

www.anteagroup.com

Heat shielding effects during a fire

- Introduction
- Heat radiation models
- Tools to use
- Examples
- Under development
- Questions

Introduction

- Industrial fires (outdoors)
 - Tankfire, bundfire, proces equipment fire, truck/trainloading fire, jet fire
- Shielding effects are not often incorporated
 - Can make the difference between approved or disapproved
 - Can save money
- Tools that can take this into account (not limited)
 - CFD
 - Phast
 - GIS (under development)
- Simple shields can make a difference
 - Choose the right material

Heat radiation - Conventional models

 Goal: determine effect distances in an effective and non timeconsuming way

• Foundation is laid in: PGS 2/CPR 14 E/"Yellow Book". Collected '80 - '90 by TNO NL

- Used in programs such as Phast, Effects etc.
- 2D in basis

Heat radiation – Conventional models

- Current model:
 - Circular Heat column
 - No interaction with environment
- Physical
 - Evaporation
 - Combustion heat
- Empirical
 - Heat radiation
 - Sooty Flame

Heat radiation – Conventional models

- Burn rate
 - Evaporation rate (heat of vaporisation)
 - Heat released during combustion (Heat of combustion)

- Flame type
 - SEP (Surface Emissive Power)
 - Luminous, smoky and general

Heat radiation – Conventional models

Flame Types:

- Luminous
- Smoky
- General

Point Source Model Solid Flame Model (Conventional) Solid Flame Model (Modified)

• Determines:

- Maximum surface emissive power,
- Maximum burn rate,
- Emissive power length scale,
- Pool fire burn duration.

Conventional model limitations!

- Choice of substance is essential
- What to do with a mixture of substances?
- Shielding cannot be quantified

Licensed situation determines worst case. Not as build situation

Viewfactor - shielding

The viewfactor is the ratio between received and emitted radiation per unit area.

the intensity of the radiation source Q (kW/m2);

• the visibility factor Fv(x), which is a function of the distance x from

the source

Heat radiation damage estimate

Heat Flux put in perspective.

Heat Flux (kW/m ²)	Example	
1	Sunny day in Greece	
2.5	Typical firefighter exposure	
3-5	Pain to skin within seconds	
20	Threshold flux to floor at flashover	
Approx. 60	HC Poolfire edge	
60 - 250	Flames over surface	

Heat radiation damage estimate

- 12.5 kW/m2 escalation potential for installation (storage tanks, piping, equipment) containing (fire) hazardous substances (IP-19)
- 32 37.5 kW/m2 fast escalation potential, within minutes (IP-19)
- 250 kW/m2 potential heat flux within the pool fire (IP-19)
- 350 kW/m2 potential heat flux within a jet fire (IP-19)

But ...

Heat radiation damage estimate

Escalation potential depending on:

- % irradiated area (shielding)
- Installation volume (m3)
- Installation content (type of substance)
- Self-cooling power of inventory
- Safety measures (e.g. cooling systems)
- Venting philosophy
- Insulation
- Scenario duration (x minutes)

Tools to use (basic to advanced)

- Excel calculation sheets
- Aloha Cameo (free to use)
- Licenced software (most frequently used):
 - Effects, Shell FRED (GEXCON)
 - Phast (DNV)
- CFD
- GIS applications (under development)

3D	Shielding	
No	?	
No	No	
No	No	
Yes	Yes	
Yes	Yes	
Yes	Yes	

Fire wall height requirement

- Is height sufficient?
- What length?

Storage tanks cooling requirements

- Is cooling water capacity sufficient?
- Shielding effect needs to be determined

Pipe rack shielding effects

- Main pipe rack contains hazardous pipelines
- Is additional protection required?

Pipe rack shielding effects

- Building receiving heat radiation contains hazardous equipment
- Without shielding effect heat radiation levels to high

Example CFD – Shielding effect

• CFD simulations can be more precise.

Example CFD – Reflection effect

Reflections can cause extra attention areas

Example CFD - Channel effect

High objects will channel the flames upward

Under development – GIS tooling

Effect module in ArcGIS online

Effect module in ArcGIS online

Plasbranden Start	Rekenmodule	antea group
Q 😂 🛗 🛱 🖫		Brandstof* -Selecteren-
		Windrichting* -Selecteren-
		Windsnelheid*
		Luchtdruk*
		Temperatuur*
		€ Luchtvochtigheid*
		+ - Resolutie*
	⟨ Geselecteerde objecter	n:0

Email: rene.sloof@anteagroup.nl